Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers

نویسندگان

  • Soroush Shabahang
  • Guangming Tao
  • Joshua J. Kaufman
  • Ayman F. Abouraddy
چکیده

We report the results of systematic measurements of the group velocity dispersion (GVD) in chalcogenide glass (ChG) bulk samples, composite ChG fibers, and robust high-index-contrast nanotapers. The composite ChGpolymer fibers are drawn from an extruded multimaterial preform incorporating a thick built-in polymer jacket that is thermally compatible with the ChG used, and the nanotapers are then produced without removing the polymer. We isolate the contributions of material and waveguide GVD to the total dispersion in the nanotapers and support the results with finite-element simulations. These results indicate many possibilities for dispersion engineering and nonlinearity enhancement in all-solid index-guiding ChG fibers stemming from the flexibility of this fiber fabrication methodology. © 2013 Optical Society of America OCIS codes: (060.0060) Fiber optics and optical communications; (120.0120) Instrumentation, measurement, and metrology; (160.0160) Materials. http://dx.doi.org/10.1364/JOSAB.30.002498

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation

Wepresent the results of an investigation of the nonlinear characteristics of a new class of robust,multimaterial, allsolid chalcogenide nanotapers prepared from high-index-contrast chalcogenide fibers. The fiber is drawn from a preform produced bymultimaterial coextrusion and consists of chalcogenide core and cladding (which dictate the optical properties) and a built-in thermally compatible p...

متن کامل

Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses.

We report on infrared supercontinuum generation extending over more than one octave of bandwidth, from 850 nm to 2.35 μm, produced in a single spatial mode from a robust, compact, composite chalcogenide glass nanotaper. A picosecond laser at 1.55 μm pumps a high-index-contrast, all-solid nanotaper that strongly confines the field to a 480 nm diameter core, while a thermally compatible built-in ...

متن کامل

Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers

A critical challenge in the fabrication of chalcogenide-glass infrared optical fibers is the need for first producing large volumes of highpurity glass – a formidable task, particularly in the case of multicomponent glasses. We describe here a procedure based on multimaterial coextrusion of a hybrid glass-polymer preform from which extended lengths of robust infrared fibers are readily drawn. O...

متن کامل

Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers.

The development of robust infrared fibers is crucial for harnessing the capabilities of new mid-infrared lasers. We present a novel approach to the fabrication of chalcogenide glass fiber preforms: one-step multimaterial extrusion. The preform consists of a glass core and cladding surrounded by a built-in, thermally compatible, polymer jacket for mechanical support. Using this approach we extru...

متن کامل

Design and optimization of poly lactic acid/bioglass composite screw for orthopedic applications

However, problems such as osteoporosis due to high elasticity of metals relative to bones, and local infections and systemic problems caused by releasing metallic ions have motivated research on replacing metallic screws with non metallic ones. In this study, the composite containing poly-l-lactic acid and bioactive glass fibers were considered for the design of the screw using ABAQUS software ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013